proximAl pRotection with the MO.ma device dUring caRotid stenting

Robert M. Bersin, MD, MPH, FACC, FSCAI Medical Director, Endovascular Services Seattle Cardiology and Swedish Medical Center

proxim<u>A</u>I p<u>R</u>otection with the <u>MO</u>.ma device d<u>U</u>ring ca<u>R</u>otid stenting

Speaker Disclosure for Robert M. Bersin, MD

The following relationships exist related to this presentation: None

Off label use of products will be discussed in this presentation: None

ARMOUR Study Overview

- Prospective multicenter (US and EU) single arm IDE trial to evaluate the safety and effectiveness of the MO.MA device for cerebral protection in <u>high surgical risk</u> CAS candidates with <u>any FDA approved carotid stent</u>
 - Primary Endpoint: Major adverse cardiac and cerebrovascular events (MACCE: MI, stroke, death) at 30 days
 - Number of Investigational Sites: 25 (20 US + 5 EU)
 - Number of patients: 225 study subjects (ITT) + 37 roll-in
 - Independent Clinical Event Committee, Data Safety Monitoring Board, Angio and DUS Core labs

Study Investigators and Core Laboratore

20 Sites US

Gary Ansel - Columbus, OH Mike Bacharach - Sioux Falls, SD Robert M.Bersin - Seattle, WA Michael Dahn - Farmington, CT Tony Das - Dallas, TX Rajesh M. Dave - Harrisburg, PA Bruce Gray - Greenville, SC Richard Heuser - Phoenix, AZ L. Nelson Hopkins - Buffalo, NY Barry Katzen - Miami, FL John R. Laird - Sacramento, CA James R. Margolis - Miami, FL Gregory J. Mishkel - Springfield, IL Subbarao Myla - Newport Beach, CA Issam D. Moussa - New York, NY Stephen R. Ramee - New Orleans, LA Kenneth Rosenfield - Boston, MA Gary Roubin - New York, NY Robert Safian - Royal Oak, MI Lowell Satler - Washington, DC

5 Sites EU

Alberto Cremonesi – Cotignola, Italy Horst Sievert – Frankfurt, Germany Dierk Scheinert – Leipzig, Germany Paolo Rubino – Mercogliano, Italy Dariusz Dudek – Kracow, Poland

225 Study Subjects

Core Laboratories

VasCore – Michael Jaff, DO Brigham & Women's – Jeffrey Popma, MD

Principal Investigators

Gary Ansel, MD – Columbus, OH L. Nelson Hopkins, MD – Buffalo, NY

MOMA Overview

Proximal Flow Blockage Cerebral Protection Device

- CCA clamping: blockage of antegrade blood flow
- ECA clamping: blockage of retrograde blood flow
- Debris removal: syringe blood aspiration

MOMA Overview

- Guiding Sheath integrating 2 compliant balloons
 - 6F I.D. fully usable Working Channel

MOMA Key Facts

- Guiding sheath with 2 anchoring balloons
 - high system stability and back-up support
 - guide wire of choice to cross the lesion
- Lesion crossing under protection
- No need for suitable landing zone in the distal diseased ICA
- All type and size debris aspiration

MOMA Case Example

Procedural Steps

- 1. Mo.Ma device introduction
 - 2. ECA balloon inflation
 - 3. CCA balloon inflation
- 4. Guidewire to cross ICA lesion
 - 5. PTA/Stent placement
- 6. Aspiration of blood and debris

Key Eligibility Criteria

- Target lesion within the ICA and/or the carotid bifurcation
 - ≥80% DS for Asymptomatic subjects or
 - ≥ 50% DS for Symptomatic subjects

and

≥ 1 High Surgical Risk Criteria:

Clinical

- Age > 75
- CCS Angina class 3-4 or UA
- CHF Class III-IV
- LVEF < 35%
- MI < 6 weeks
- Coronary artery disease with >2 vessel disease in major vessel & history of angina
- Severe pulmonary disease
- Permanent contralateral cranial nerve injury

Anatomical

- High cervical lesion
- Tandem lesions > 70%
- Hostile neck
- CEA restenosis
- Cervical immobility due to fusion or arthritis
- Bilateral carotid stenosis, both requiring treatment

Key Exclusion Criteria

Key Exclusion Criteria

- TIA or amaurosis fugax within 48 hours
- MI within 72 hours
- CABG or vascular surgery within 30 days
- Stroke or retinal artery occlusion within 30 days
- Total occlusion of the target carotid artery
- CCA ostial stenosis requiring treatment
- Aortic arch anatomical anomalies precluding safe placement of the device

ARMOUR

Demographics and Clinical

Nr of Patients (ITT)	220
Male gender	66.7%
Age (mean ± SD)	74.66±8.54
Octogenarians	28.88%
Age > 75y	56.1%
Symptomatic	15.1%
Diabetes	37.1%
Current Smokers	15.1%
Hypertension	87.1%

Lesion and Anatomy

Lesion	length (mm)	13.37±5.57	
	%DS	72.15±10.50	
Eco	centric lesion	43.3%	
Severe	calcification	67.4%	
	Ulceration	7.8%	
Right ICA (%)		54.0%	
	Aortic Arch	Type I = 64% Type II = 29.3% Type III = 6.7% Bovine = 16%	

High Surgical Risk Distribution (ITTANCIONIE)

Lesion, Procedural Characteristics (ITT)

Procedural time (min) 38.35±21.20 Clamping time (min) 6.71±3.82 44% Collected debris **Back Pressure (mm Hg)** 55.38±24.19 57.1% **Lesion pre-dilatation** Stent post-dilatation 97.4% Device Success 1 98.2% Technical Success ² 94.6% Procedural Success ³ 93.2%

Carotid Stent Distribution

- 1. Device Success: ability to position, deploy and retrieve the intact MO.MA device during the index procedure
- 2. **Technical Success:** Device Success + ability to successfully implant a carotid stent and obtain a residual stenosis < 30% during the index procedure (evaluated by the Angio Corelab)
- 3. **Procedural success:** Technical success without the occurrence of any MACCE or unresolved antegrade flow blockage intolerance during the index hospitalization

- 5% Site reported SAE =16.4% of subjects (ITT)
 - No (0%) Unanticipated Adverse Device Effects (UADE)

Results 1° Endpoint

	ITT (N=220)	Roll-In (N=37)	Full Analysis (N=257)
30d MACCE rate	2.7% (6/220)	0.0% (0/37)	2.3% (6/257)
Any myocardial infarction	0.0% (0/220)	0.0% (0/37)	0.0% (0/257)
Stroke - Minor Stroke - Major Stroke	2.3% (5/220) 1.4% (3/220) 0.9% (2/220)	0.0% (0/37) 0.0% (0/37) 0.0% (0/37)	1.9% (5/257) 1.2% (3/257) 0.8% (2/257)
Death	0.9% (2/220)	0.0% (0/37)	0.8% (2/257)
MACCE rate (procedural)	1.8% (4/225)	0.0% (0/37)	1.5% (4/262)
MACCE rate (at discharge)	1.8% (4/225)	0.0% (0/37)	1.5% (4/262)

Results 1° Endpoint

30d Results (ITT & Full Population)

30d Results by Symptoms and Age (ITT)

Results 2° Endpoints (ITT) ARMOUR

MO.MA Device Success	98.2%
 Technical Success 	94.6%
 Procedural Success 	93.2%
Restenosis at 30 days	1.6%
TLR at 30 days	0.0%
 Access Site Complications 	3.1%

Conclusions

- ARMOUR demonstrated ease of use with the MO.MA device with a limited learning curve (zero MAACE events in the lead-in phase)
- ARMOUR confirmed the safety and effectiveness of MO.MA proximal protection for CAS in high surgical risk patients with different FDA approved carotid stents
- Cumulative 30 day event rate of 2.7% in ARMOUR compares very favourably with historical and recent CAS study results
- There is no apparent increase risk of MACCE events in symptomatic patients or the elderly with the MO.MA device

Additional Slides and Images

Simple Steps to Full-Time Proximal Cerebral Protection

1. Placement of Mo.Ma Ultra device

2. Balloon Inflation -

External Carotid Artery (ECA)

Common Carotid Artery (CCA)

3. Introduction of guidewire into the-Internal Carotid Artery (ICA)

4. Placement of stent -

5. Aspiration of blood and debris

Mo.Ma Ultra- for all your carotid needs

Soft ulcerated plaque...

Distal balloon inflation

Proximal Flow Suspension

Stent deployment

Final Result

...and Anatomical complexity

