Techniques for LM Stenting

Steven R. Bailey, MD, FACC, FSCAI
Chief, Division of Cardiology
Professor of Medicine and Radiology
Janey Briscoe Distinguished Professor
UTHSCSA
Past President SCAI
Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

<table>
<thead>
<tr>
<th>Affiliation/Financial Relationship</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grant/Research Support</td>
<td>Palmaz Scientific, Abbott, St Jude Medical, SCAI</td>
</tr>
<tr>
<td>Consulting Fees/Honoraria</td>
<td>BSCI, Osprey Medical</td>
</tr>
<tr>
<td>Major Stock Shareholder/Equity</td>
<td>BIO2, Biostar</td>
</tr>
<tr>
<td>Intellectual Property Rights</td>
<td>UTHSCSA</td>
</tr>
<tr>
<td>Other Financial Benefit</td>
<td>CCI Editor In Chief</td>
</tr>
</tbody>
</table>
Revascularization Of Left Main Coronary Artery : Topics

• Defining Left Main Disease
• Challenges of Left Main PCI
• What is "Optimal" Left Main PCI?
 Stent Design
 Approach
• Techniques for Left Main PCI :
 – Provisional vs. Elective Double Stenting
 – How to optimize results with provisional stenting
 – How to optimize results with elective double stenting
Revascularization Of Left Main Coronary Artery: Topics

• Defining Left Main Disease

• Challenges of Left Main PCI

• What is "Optimal" Left Main PCI?
 Stent Design
 Approach

• Techniques for Left Main PCI:
 – Provisional vs. Elective Double Stenting
 – How to optimize results with provisional stenting
 – How to optimize results with elective double stenting
4.8% of patients undergoing coronary angiogram
Male gender and Age are the only independent predictors
Associated with 3-VD in approx 50% of the cases
Isolated LMCA stenosis in 5%
 (more frequent in women)
UPLM: Lesion Location and Complexity

Ostial and Body Versus Distal Bifurcation

- Ostial: 23.6%
- Body: 73.7%
Revascularization Of Left Main Coronary Artery: Topics

• Defining Left Main Disease
• Challenges of Left Main PCI
• What is "Optimal" Left Main PCI?
 - Stent Design
 - Approach
• Techniques for Left Main PCI:
 - Provisional vs. Elective Double Stenting
 - How to optimize results with provisional stenting
 - How to optimize results with elective double stenting
Left Main Lesion Locations Per Patient
LM PCI Subset of SYNTAX Trial (N=357)

A) [Image]

B) [Image]

*Distal lesions defined as LM bi/trifurcation
Euroscore = 4
SYNTAX Score = 13

SYNTAX Score = 41
Euroscore = 6
The figure represents the distribution of SYNTAX Trial Patient Distribution for LM Patients. Here are the details:

- **LM CABG Registry (N=302):**
 - High: 19%
 - Intermediate: 5%
 - Low: 4%
- **LM PCI Registry (N=76):**
 - High: 2%
 - Intermediate: 23%
 - Low: 21%
- **LM RCT Patients (N=705):**
 - High: 26%
 - Intermediate: 18%
 - Low: 21%

The procedures are categorized as follows:

- **CABG:** 45%
- **PCI:** 55%

SYNTAX Scores:
- High: \(\geq 33 \)
- Intermediate: 23-32
- Low: \(\leq 22 \)
UPLM
SYNTAX to 4 years

Score 0-32

Score >32
Complexity of the lesion
LM Bifurcation vs Non-Bifurcation Stenting

Angiographic Restenosis

<table>
<thead>
<tr>
<th>Bifurcation</th>
<th>Non-bifurcation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2%</td>
<td>1.7%</td>
</tr>
</tbody>
</table>

TLR at 3 Year

<table>
<thead>
<tr>
<th>Bifurcation</th>
<th>Non-bifurcation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8%</td>
<td>1.2%</td>
</tr>
</tbody>
</table>

Angiographic F/U in 82.7% (BMS) and 79.5% (DES)

- **BMS**:
 - Total: 31.6%
 - Bifurcation: 7.2%
 - Non-bifurcation: 10.2%

- **DES**:
 - Total: 47.4%
 - Bifurcation: 22.1%
 - Non-bifurcation: 1.7%

P-values:
- LM Bifurcation vs Non-Bifurcation: P=0.043
- Total: P<0.001
- Bifurcation: P=0.024

DES group
Korean Experience

Freedom from TLR (%)

\[p \text{ (log-rank)} = 0.3841 \]
Ostial and Shaft lesions

- Either Femoral or Radial Access
- Guide Support
 - Avoid trauma by “Deep Throating”
 - May choose larger guide for stability
- Single DES
- Careful stent placement
 - LAO cranial or biplane imaging
 - Stop mid-respiration
 - Consider “Rapid” pacing
 - rate of 100-120
UPLM Bifurcation lesions

• Represent majority (80%) of LM lesions
• Technique resembles non-left main bifurcations but requires more attention to details
 • Review cine and case with colleagues
 • Consider lesion preparation
• Bifurcation Angle is important
 • Average LAD/D1 angle is <60°
 • Average LMS/CX angle is >90°
Why is bifurcation angle so important?

- Metal fatigue with acute angle predisposes to strut fracture
- Areas of low shear stress promote restenosis
Technical issues
Bifurcation LMCA stenting

- Technically more challenging than Ostial lesions
 - Guide choice is critical
 - May need to have active seating
 - If using two stents consider larger guide
 - Highest restenosis, particularly when complex stent is used, occurring at the LCX ostium in most of the cases
Technical issues
Bifurcation LMCA stenting

• Technically more challenging
 • The strategy will differ according to anatomical issues:
 • bifurcation lesion, angles, relative differences re vessel sizes
 • Different bifurcation techniques (Provisional T-stenting, Crush stenting, T-stenting, V-stenting)

• Cross Over Stenting
 • preferred when there is no significant disease in the LCX ostium, regardless of the size of the ULMCA
Lesion Preparation

• Left main lesions
 • More calcified
 • More fibrous
 • Greater angulation

• Thoughtful approach and good lesion preparation critically important for success
Lesion preparation

- Rotational atherectomy
- Cutting balloons
- Scoring balloons
- High pressure non-compliant balloons
Bifurcation lesion - UPLM

Baseline

Rotablator
Bifurcation lesion -

Result after PRCA and POBA
Bifurcation lesion - ULM

Stent deployment
UPLM Target lesion Revascularization Rates

Toyofuku et al, J-Cypher Registry, Eurointervention 2011
UPLM

One vs Two stents

<table>
<thead>
<tr>
<th></th>
<th>LMCA bifurcation</th>
<th>One-stent</th>
<th>Two-stent</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesion-level n</td>
<td></td>
<td>741</td>
<td>204</td>
<td></td>
</tr>
<tr>
<td>TLR (%)</td>
<td></td>
<td>39/701 (5.6)</td>
<td>46/190 (24.2)</td>
<td><.0001</td>
</tr>
<tr>
<td>Definite ST (%)</td>
<td></td>
<td>1/698 (0.1)</td>
<td>5/188 (2.7)</td>
<td>0.002</td>
</tr>
<tr>
<td>Early ST (1-30 days)</td>
<td></td>
<td>0 (0.0)</td>
<td>2 (1.0)</td>
<td>0.046</td>
</tr>
<tr>
<td>Late ST (31-365 days)</td>
<td></td>
<td>1 (0.1)</td>
<td>3 (1.5)</td>
<td>0.03</td>
</tr>
<tr>
<td>Patient-level n</td>
<td></td>
<td>741</td>
<td>204</td>
<td></td>
</tr>
<tr>
<td>All-cause death (%)</td>
<td></td>
<td>43 (5.8)</td>
<td>18 (8.8)</td>
<td>0.15</td>
</tr>
<tr>
<td>Cardiac death (%)</td>
<td></td>
<td>22/720 (3.1)</td>
<td>14/200 (7.0)</td>
<td>0.021</td>
</tr>
<tr>
<td>MI (%)</td>
<td></td>
<td>8/698 (1.2)</td>
<td>6/190 (3.2)</td>
<td>0.091</td>
</tr>
<tr>
<td>Cardiac death or MI (%)</td>
<td></td>
<td>30/720 (4.2)</td>
<td>16/200 (8.0)</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Toyofuku et al, J-Cypher Registry, Eurointervention 2011
Double Stenting Techniques

• T Stenting
• Crush Technique
• Culotte Technique
• V stenting
• Simultaneous Kissing Stenting (SKS)
Variants of T-Stenting

<table>
<thead>
<tr>
<th></th>
<th>Elective</th>
<th>Provisional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classic-T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variant-T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modified-T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Provisional Modified T-Stenting

“TAP” Technique

Burzotta F et al. CCI 70:75–82 (2007)
Crush stenting

1: Wire both branches and predilate if needed

2: Advance the 2 stents. MB stent positioned proximally. The SB stent will protrude only minimally into MB.
Crush stenting

3: Deploy the SB stent

4: Check for optimal result in the SB and then remove balloon and wire from SB. Deploy the MB stent
Crush stenting

5: Rewire the SB and perform high pressure dilatation

6: Perform final kissing balloon inflation
Crush Stenting

Crush technique: 3.0x33 Cypher in Cx and 3.5x18 Cypher in LAD.
Crush Stenting
Final result after kissing
The (Mini) Crush Technique

• Advantages
 – Guarantees the complete coverage of the SB ostium while ensuring the patency of both branches throughout the procedure.
 – Has been utilized in the RCTs.

• Disadvantages
 – Need to rewire the SB
 – Excessive metal (3 layers) in the MB proximal to the origin of the SB which can complicate rewiring and balloon re-crossing.
UPLM Bifurcation Stent Simple approach

• A single stent will almost always suffice when:
 • The circumflex is small
 • The Medina classification is x,x,0
 • (i.e. either the LAD or Cx ostium is not diseased)
 • Any ostial LAD or Cx disease is short

• >80% of LMS bifurcation lesions can be treated with a single stent
UPLM STENT STRATEGIES

- Ostial and shaft lesions
- Bifurcation lesions
- Lesion preparation
Why Does PCI of Coronary Bifurcations Remain a Challenge?

Side Branch Compromise / Occlusion

- Side branch occlusion (SBO) after PCI of bifurcation lesions is common (~7-20%) and is associated with increased incidence of non-Q wave MI.

- SBO occurs more often in complex bifurcations and increases with increasing severity of the side branch stenosis.
IMAGING GUIDANCE

- Sizing of Stent for Left Main
- Stent expansion/apposition
- Aid in assessing lesion significance
Sizing

- Simplest role of IVUS
- Possibly the most important?
- Angiography systematically “undersizes” LMS
Stent expansion/apposition

- Angiography will miss incomplete apposition
Use of IVUS in UPLM

Park SJ, Circulation 2010
HEMODYNAMIC SUPPORT

• When might haemodynamic support be indicated for UPLM interventions?
 • Depressed LV function
 • Sole remaining vessel
 • Rotational Atherectomy
What hemodynamic support?

- IABP
- Impella
- LV assist devices
UPLM
LV Support in Stable Cases

• Plan vascular access
• IABP availability useful
 • Especially useful if LV poor
 • Can “buy time” if complications occur
 • Vessel dissection
 • Slow flow
 • Vessel closure
• Radial operator – groin ready for access
• Vascular access complications may limit potential benefit
BCIS I Revascularisation Details

<table>
<thead>
<tr>
<th></th>
<th>Elective IABP</th>
<th>No Planned IABP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedural Success</td>
<td>94%</td>
<td>93%</td>
</tr>
<tr>
<td>No. of Vessels treated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 vessel</td>
<td>73 (48%)</td>
<td>69 (46%)</td>
</tr>
<tr>
<td>2 vessels</td>
<td>64 (42%)</td>
<td>64 (43%)</td>
</tr>
<tr>
<td>3 vessels</td>
<td>13 (9%)</td>
<td>16 (11%)</td>
</tr>
<tr>
<td>Coronary Segment treated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left Main Stem</td>
<td>35 (23%)</td>
<td>41 (27%)</td>
</tr>
<tr>
<td>Proximal LAD</td>
<td>73 (48%)</td>
<td>71 (47%)</td>
</tr>
<tr>
<td>Lesions treated (mean ± SD)</td>
<td>2.15 ± 1.04</td>
<td>2.05 ± 1.02</td>
</tr>
<tr>
<td>Rotational Atherectomy</td>
<td>20 (13%)</td>
<td>17 (11%)</td>
</tr>
<tr>
<td>Drug-eluting stent use</td>
<td>67%</td>
<td>67%</td>
</tr>
<tr>
<td>GP2b3a inhibitor use</td>
<td>39%</td>
<td>43%</td>
</tr>
</tbody>
</table>
BCIS I All-cause Mortality
by treatment assignment

Hazard ratio 0.66 (95% CI 0.44 to 0.98)
Shock II Trial
Primary Study Endpoint (30-Day Mortality)

~90% of IABPs inserted after PCI…
PROTECT II

- IABP vs Impella in high risk PCI (25% LM)
- No difference in MACE between groups but perhaps a difference in non PRCA group

Per Protocol (N=374)

Log rank test, $p=0.005$
PCI for UPLM: Summary

- Current angiographic bifurcation classifications are not well tested in left main lesions.
- 4 out of 5 large RCTs comparing provisional to elective double stenting (EDS) included only low-risk (non left main) bifurcation lesions.
- Provisional SB stenting should be the default technique in most patients with left main stenosis.
- Elective double stenting of the MV and SB may be preferable to provisional stenting in selected patients with “high-risk” distal left main bifurcations.
CONCLUSIONS

• Case review and selection is critical
• Choice of access and guides should be based upon anatomy and planned intervention
• For the UPLM bifurcation, single stent strategies are still preferred and should yield acceptable results for >80% of cases
• Lesion preparation/vessel modification may be needed for successful procedure
• IVUS guidance should be considered and may improve clinical outcomes
• Hemodynamic support remains clinically useful in selected high risk individual patients
Thank You

Questions?