Branch PA Stenosis: Case Presentation(s)

Dr Damien Kenny, MD, MRCPCH
Consultant Cardiologist
Our Lady’s Hospital for Sick Children
& The Mater Hospital
Dublin, Ireland
Case

• 11 year old

• T21 s/p previous Tetralogy repair (TA Patch)

• Limited as a consequence of T21 (No overt symptoms)

• Listed for bilateral branch PA stenting
Initial Angiogram
Angled Views
Selective LPA
Selective RPA
What Intervention?

- LPA Stent
- RPA Stent
- Bilateral Stents
- Stop Here and refer for surgery
Class I

Primary intravascular stent implantation is indicated for the treatment of significant proximal or distal branch pulmonary artery stenosis when the vessel/patient is large enough to accommodate a stent that is capable of being dilated to the adult diameter of that vessel (Level of Evidence: B).
Guidelines?

Class I
Primary intravascular stent implantation is indicated for the treatment of significant proximal or distal branch pulmonary artery stenosis when the vessel/patient is large enough to accommodate a stent that is capable of being dilated to the adult diameter of that vessel (Level of Evidence: B).

- >20-30mmHg Gradient
- RV Pressure > 50% - 66% Systemic
- Flow Discrepancy 65/35% or worse

Class IIa
Primary intravascular stent implantation is reasonable in the treatment of significant stenosis of the main pulmonary artery segment that results in elevation of the RV pressure, provided that the stent definitely will not compromise a functioning pulmonary valve and will not impinge on the pulmonary artery bifurcation (Level of Evidence: B).
Class I
Primary intravascular stent implantation is indicated for the treatment of significant proximal or distal branch pulmonary artery stenosis when the vessel/patient is large enough to accommodate a stent that is capable of being dilated to the adult diameter of that vessel (Level of Evidence: B).

- >20-30mmHg Gradient
- RV Pressure > 50% - 66% Systemic
- Flow Discrepancy 65/35% or worse

Class IIa
Primary intravascular stent implantation is reasonable in the treatment of significant stenosis of the main pulmonary artery segment that results in elevation of the RV pressure, provided that the stent definitely will not compromise a functioning pulmonary valve and will not impinge on the pulmonary artery bifurcation (Level of Evidence: B).
26mm ev3 Mega on
14x30 BiB
Positioning Angiograms
Further Angiography
Following Inner Balloon Inflation
Inflation of Outer Balloon
Post Deployment
Angiogram
What Now?

• Residual gradient of 12mmHg

• Call it a day..

• Further stent to the LPA

• Stent to RPA

• Other Suggestions?
Access to the RPA
Persisting LPA Narrowing
Re-Cross the LPA and Place Further Stent
Stent Deployment
The Multi-Track Strikes Again!
Reflection

Insanity: doing the same thing over and over again and expecting different results.

- Albert Einstein

www.quotesworthrepeating.com
What Would I Do Differently?

1. Advocated for a Complete Repair

2. Bilateral Stents

3. Telescope Valve in from the LPA with strut breakage on the right
MARCH 3–5, 2016 | DUBAI, UAE

PICS-CSI ASIA 2016 – CATHETER INTERVENTIONS IN CONGENITAL, STRUCTURAL AND VALVAR HEART DISEASE

www.csi-congress.org/pics-csi-asia