Imaging Assessment of Aortic Stenosis/Aortic Regurgitation

Craig E Fleishman, MD FACC FASE
The Heart Center at Arnold Palmer Hospital for Children, Orlando
SCAI Fall Fellows Course 2015
Las Vegas
Imaging assessment of Aortic Stenosis/Aortic Regurgitation

Craig E Fleishman MD, FACC, FASE

As a faculty member for this program, I disclose the following relationships with industry:

(GRS): Grant/Research Support (C): Consultant (SB): Speaker’s Bureau
(MSH): Major Stock Holder (AB): Advisory Board (E): Employment
(O): Other Financial or Material Support

None
Goals

- Aortic Valve
- Aortic Stenosis
- Aortic Regurgitation
- Example
Aortic Valve

• Valve extends from ventricle to sinotubular junction
• Leaflets attached in semilunar fashion
• Interdigitation of sinus and ventricle
• No ring-like “annulus”
Sinutubular junction

Ventricular attachment

Courtesy Dr. Robert Anderson
Virtual basal ring

Courtesy Dr. Robert Anderson
Left Ventricular Outflow Tract Obstruction

- **Valvar**: 50%
- **Subvalvar**: 33%
- **Supravalvar**: 17%
Aortic Valve Morphology
Aortic Valve Morphology

- Congenital bicommissural valve (2% incidence)
 - Most common congenital lesion
- Unicommissural
- Tricommissural dysplastic
- Doming – Thickened leaflets with restricted mobility
Dysplastic Aortic Valves
Aortic Valve Stenosis
Aortic Valve Stenosis

Distance cal = 2.0 cm

Distance = 6.6 mm
3-D Echo after balloon aortic valvuloplasty
Aortic Valve Stenosis - Doppler

<table>
<thead>
<tr>
<th>Severity</th>
<th>Peak Doppler (mmHg)</th>
<th>Mean Doppler (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild</td>
<td><36 (3 m/s)</td>
<td><25</td>
</tr>
<tr>
<td>Moderate</td>
<td>36-64</td>
<td>25-40</td>
</tr>
<tr>
<td>Severe</td>
<td>>64 (4 m/s)</td>
<td>>40</td>
</tr>
<tr>
<td>Extremely Severe</td>
<td>>100</td>
<td>>60</td>
</tr>
<tr>
<td>Critical</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Left ventricular dysfunction</td>
<td>Ductal dependent</td>
</tr>
</tbody>
</table>
Critical Aortic Stenosis

- Thickened and domed aortic leaflets
 - Nearly immobile
- Post stenotic dilatation
- LVH
- Echogenicity from EFE
- Decreased LV function
- Decreased cardiac output
- Dec Doppler grad
Echocardiographic Assessment of Severity

- **Indirect signs**
 - LV mass
 - LV mass/volume
 - LA hypertension

- **Doppler**
 - Peak Instant. Gradient
 - Mean Systolic Gradient
 - Tissue Doppler, Strain

- **Aortic Valve area**
 - Planimetry
 - Continuity
Aortic Valve Stenosis - Doppler

Pre-balloon

Post-balloon
Advantages of Doppler Mean vs Peak Instantaneous

• Mean grad directly comparable to cath
• Mean grad not dependent on a single velocity measurement
 – Greater accuracy and reproducibility
• Mean grad less affected by transvalvular flow
• More direct relationship to valve area
Cath: Peak to Peak

Echo: Peak Instantaneous

Beekman et al AJC 1992;69:813
Aortic Valve Area

- Continuity equation
- $SV_{AV} = SV_{LVOT}$
- $AVA \times VTI_{AV} = CSA_{LVOT} \times VTI_{LVOT}$

Baumgartner et al. JASE 2009, 22:1-23
Aortic Valve Area – Continuity Equation Potential Error

- Inaccurate measurement LVOT diameter
 - Error is squared
- Error in proximal velocity
- Doppler Area = Effective Orifice Area
- Planimetry Area = Anatomic Orifice Area
Aortic Valve Imaging - MSCT

RC: right coronary
LC: left coronary
NC: non-coronary

Effective Aortic Valve Area – 3D Echo

- Direct measurement
- Can align with eccentric orifice
- Change in 3D EOA correlated with acute change in aortic gradient

Bharucha Tet al Echocardiography 2011;29:484-91
Pressure Differences (Gradients)

Depends on flow of blood through a restricted orifice

- Interpretation:
 - Effect of cardiac output
 - anesthesia / sedation / agitation
 - Effect of time
 - Sensitive to changes in contractility
 - anesthesia, contrast, etc
 - Effect of intervention
Pressure and Flow

- Pressure is determined by flow and resistance
- Remember that both are variable and can change between echo and catheterization
 - Vascular resistance
 - Stenosis and Regurgitation
 - Myocardial Contractility
 - Volume status
 - Hematology
Univentricular versus Biventricular

- "Rhodes’ Score" for Critical Aortic Stenosis
 - LV to apex of heart long axis < 0.8
 - Indexed aortic root < 3.5 cm/m²
 - Mitral valve area < 4.75 cm/m²
 - LV mass < 35 g/m²

BiV Mortality 100% if 2 or more risk factors

\[\text{SCORE} = 14.0 \text{ (BSA)} + 0.943(\text{indexed Ao root}) + 4.78(\text{LAR}) + 0.157(\text{MVA indexed}) - 12.03 \]

<-0.35 predicts death with biventricular repair
Univentricular versus Biventricular

- 2006 “Rhodes’ Score” revisited/re-evaluated
- Revised discriminant score
 - Ao root replaced with Ao annulus z-score
 - MVA and LV mass removed
 - EFE added

\[
\text{SCORE} = 10.98 \text{ (BSA)} + 0.56 \text{ (aortic annulus z-score)} + 5.89 \text{ (LAR)} - 0.79 \text{ (or 2 or 3 EFE)} - 6.78
\]

\(< -0.65 \text{ predicts death with biventricular repair}\)

Colan SD et al. JACC; 47: 1858-65
Univentricular versus Biventricular

CHSS data:
1. ascending aorta
2. Valve (at level of sinuses)
3. Length (apex to MV) in long axis.
4. Echo grade of EFE: 0-none, 1-papillary, 2-pap muscles and some of the myocardium. 3- extensive EFE.
5. Length and wt of child
6. Amount of TR
7. Prediction of management pathway that provided survival benefit

Univentricular versus Biventricular Circulation

Assumes that survival with single ventricle is equivalent to survival with biventricular circulation

JTCVS 2001;121:10-27
Aortic Regurgitation – Anatomic Variants

- Primary Congenital Valve
 - Structural Ao valve abnormalities
 - Aortico-left ventricular tunnel
 - Absence of Ao valve cusps
- Associated Congenital Heart Disease
 - VSD
 - Subvalvar AS
 - Truncus arteriosus
- Aortic Root dilation
 - Connective Tissue disorder
 - Genetic disorder
 - S/p arterial switch/Ross
- Infection
 - Infective Endocarditis
 - Rheumatic Fever
 - Ruptured aneurysm of sinus of Valsalva
Aortic Regurgitation – Echo Severity

- LV Size and Function
 - LVEDD or LVEDV, LVESD or LVESV, LV mass, EF
 - ↑ LVESD/LVESV occurs with LV failure
- Indirect Doppler indicators
 - Diastolic flow reversal in aorta
 - AR Deceleration rate, pressure half-time

In pediatric patients, few absolute echo predictors for intervention have been identified
Aortic Regurgitation – Integrative Approach

- LV Size
- Aortic leaflet changes
- Jet width in LVOT
- Vena Contracta width
- Flow quantitation
 - Regurg volume and fraction
 - Effective ROA
- AR Jet Pressure half-time, slope
- Diastolic flow reversal in descending aorta
Aortic Regurgitation
Aortic Regurgitation - Guidelines

<table>
<thead>
<tr>
<th>Severity</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
</table>
| **Specific signs for AR severity** | • Central Jet, width < 25% of LVOT
• Vena contracta < 0.3 cm²
• No or brief early diastolic flow reversal in descending aorta | Signs of AR> mild present but no criteria for severe AR | • Central Jet, width ≥ 65% of LVOT
• Vena contracta > 0.6 cm² |
| **Supportive signs** | • Pressure half-time > 500 ms
• Normal LV size | Intermediate values | • Pressure half-time < 200 ms
• Holodiastolic aortic flow reversal in descending aorta
• Moderate or greater LV enlargement |
| **Quantitative parameters** | | | | |
| RVol, ml/beat | < 30 | 30-44 | 45-59 | ≥ 60 |
| RF, % | < 30 | 30-39 | 40-49 | ≥ 50 |
| EROA, cm² | < 0.10 | 0.10-0.19 | 0.20-0.29 | ≥ 0.30 |

* Zoghbi et al. JASE 2003;16:777-802
Aortic Regurgitation – Multi-modality

- Cardiac MRI
- Cardiac CT

MGH
Case Example - Newborn
Case Example - Newborn
Case Example – After Balloon Dilation

Good News! Bad News
Case Example – After Balloon Dilation
Case Example – After Balloon Dilation
Thanks!